منابع مشابه
LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملThe Generalized Wave Model Representation of Singular 2-D Systems
M. and M. Abstract: Existence and uniqueness of solution for singular 2-D systems depends on regularity condition. Simple regularity implies regularity and under this assumption, the generalized wave model (GWM) is introduced to cast singular 2-D system of equations as a family of non-singular 1-D models with variable structure.These index dependent models, along with a set of boundary co...
متن کاملli-yorke chaotic generalized shift dynamical systems
in this text we prove that in generalized shift dynamical system $(x^gamma,sigma_varphi)$ for finite discrete $x$ with at least two elements, infinite countable set $gamma$ and arbitrary map $varphi:gammatogamma$, the following statements are equivalent: - the dynamical system $(x^gamma,sigma_varphi)$ is li-yorke chaotic; - the dynamical system $(x^gamma,sigma_varphi)$ has an scr...
متن کاملEntropies for complex systems: generalized-generalized entropies
Many complex systems are characterized by non-Boltzmann distribution functions of their statistical variables. If one wants to – justified or not – hold on to the maximum entropy principle for complex statistical systems (non-Boltzmann) we demonstrate how the corresponding entropy has to look like, given the form of the corresponding distribution functions. By two natural assumptions that (i) t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2014
ISSN: 0001-8708
DOI: 10.1016/j.aim.2013.09.001